32 research outputs found

    High Resolution Multi-parametric Diagnostics and Therapy of Atrial Fibrillation: Chasing Arrhythmia Vulnerabilities in the Spatial Domain

    Get PDF
    After a century of research, atrial fibrillation (AF) remains a challenging disease to study and exceptionally resilient to treatment. Unfortunately, AF is becoming a massive burden on the health care system with an increasing population of susceptible elderly patients and expensive unreliable treatment options. Pharmacological therapies continue to be disappointingly ineffective or are hampered by side effects due to the ubiquitous nature of ion channel targets throughout the body. Ablative therapy for atrial tachyarrhythmias is growing in acceptance. However, ablation procedures can be complex, leading to varying levels of recurrence, and have a number of serious risks. The high recurrence rate could be due to the difficulty of accurately predicting where to draw the ablation lines in order to target the pathophysiology that initiates and maintains the arrhythmia or an inability to distinguish sub-populations of patients who would respond well to such treatments. There are electrical cardioversion options but there is not a practical implanted deployment of this strategy. Under the current bioelectric therapy paradigm there is a trade-off between efficacy and the pain and risk of myocardial damage, all of which are positively correlated with shock strength. Contrary to ventricular fibrillation, pain becomes a significant concern for electrical defibrillation of AF due to the fact that a patient is conscious when experiencing the arrhythmia. Limiting the risk of myocardial injury is key for both forms of fibrillation. In this project we aim to address the limitations of current electrotherapy by diverging from traditional single shock protocols. We seek to further clarify the dynamics of arrhythmia drivers in space and to target therapy in both the temporal and spatial domain; ultimately culminating in the design of physiologically guided applied energy protocols. In an effort to provide further characterization of the organization of AF, we used transillumination optical mapping to evaluate the presence of three-dimensional electrical substrate variations within the transmural wall during acutely induced episodes of AF. The results of this study suggest that transmural propagation may play a role in AF maintenance mechanisms, with a demonstrated range of discordance between the epicardial and endocardial dynamic propagation patterns. After confirming the presence of epi-endo dyssynchrony in multiple animal models, we further investigated the anatomical structure to look for regional trends in transmural fiber orientation that could help explain the spectrum of observed patterns. Simultaneously, we designed and optimized a multi-stage, multi-path defibrillation paradigm that can be tailored to individual AF frequency content in the spatial and temporal domain. These studies continue to drive down the defibrillation threshold of electrotherapies in an attempt to achieve a pain-free AF defibrillation solution. Finally, we designed and characterized a novel platform of stretchable electronics that provide instrumented membranes across the epicardial surface or implanted within the transmural wall to provide physiological feedback during electrotherapy beyond just the electrical state of the tissue. By combining a spatial analysis of the arrhythmia drivers, the energy delivered and the resulting damage, we hope to enhance the biophysical understanding of AF electrical cardioversion and xiii design an ideal targeted energy delivery protocol to improve upon all limitations of current electrotherapy

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Outdoor Smart Cane with Beacon

    No full text
    Circuit Diagram and Code used to program new device for blind navigationThe purpose of our project is to design an electronic device to aid the visually impaired as they travel to a known exterior destination while avoiding moving and stationary obstacles. The device must be an improvement to the traditional cane currently used as an aid and help the user stay centered along a path as they continue towards their destination.Johns Hopkins Department of Biomedical Engineering, Dr. Nitish Thakor, Mehdi Rahman, Nasir Bhanpur

    A Shocking Past: A Walk Through Generations of Defibrillation Development

    No full text

    Imaging of ventricular fibrillation and defibrillation: The virtual electrode hypothesis

    No full text
    Ventricular fibrillation is the major underlying cause of sudden cardiac death. Understanding the complex activation patterns that give rise to ventricular fibrillation requires high resolution mapping of localized activation. The use of multi-electrode mapping unraveled re-entrant activation patterns that underlie ventricular fibrillation. However, optical mapping contributed critically to understanding the mechanism of defibrillation, where multi-electrode recordings could not measure activation patterns during and immediately after a shock. In addition, optical mapping visualizes the virtual electrodes that are generated during stimulation and defibrillation pulses, which contributed to the formulation of the virtual electrode hypothesis. The generation of virtual electrode induced phase singularities during defibrillation is arrhythmogenic and may lead to the induction of fibrillation subsequent to defibrillation. Defibrillating with low energy may circumvent this problem. Therefore, the current challenge is to use the knowledge provided by optical mapping to develop a low energy approach of defibrillation, which may lead to more successful defibrillation

    Where Brain, Body and World Collide

    Get PDF
    The production cross section of electrons from semileptonic decays of beauty hadrons was measured at mid-rapidity (|y| < 0.8) in the transverse momentum range 1 < pt < 8 Gev/c with the ALICE experiment at the CERN LHC in pp collisions at a center of mass energy sqrt{s} = 7 TeV using an integrated luminosity of 2.2 nb^{-1}. Electrons from beauty hadron decays were selected based on the displacement of the decay vertex from the collision vertex. A perturbative QCD calculation agrees with the measurement within uncertainties. The data were extrapolated to the full phase space to determine the total cross section for the production of beauty quark-antiquark pairs
    corecore